Showing posts with label cloud. Show all posts
Showing posts with label cloud. Show all posts

January 22, 2017

Hybrid Cloud and your applications lifecycle: 7 lessons learned


Hybrid Cloud is a must nowadays, I will not spend a word to convince you (you’d not be reading this post if you didn’t believe it). This is the story of a real project.

This post provides more context about the story I summarized at Just 1 step to deploy your applications in the cloud(s).
The structure of the post is:
  • Motivation
  • Use Cases
  • Time
  • Software Stack
  • Benefit of the architecture we implemented
  • Lessons Learned (the most important part)




Motivation for hybrid cloud, and most of the work in my customers' projects, include the following areas:
- Cost control (there is a strong debate: some swear it’s cheaper, others have discovered hidden costs: e.g. network traffic in production, after they made a business case just on the cost of VM provisioning).
- Governance model (IT must find a way to maintain control over resources usage, design patterns, compliance and security when application developers chose private cloud or public cloud).
- Mature technical solution: architecture and technology (there are many good products and system integrators in the market)

But, once you have made a decision, what will you run in the hybrid cloud?
Will your applications be spread across the boundary of your datacenter (one tier inside, other tiers outside)?
Or can we say that it is rather a multi-cloud deployment, where you have a number of resource pools that you can use as a target for deployments?

This project was made by a large corporation, to test how a hybrid cloud can be built and operated and to verify the impact on their current organization.
It is not a full production environment, it’s a pilot project that demonstrated on a small scale how easily you can build a software defined fully automated data center, including both resource pools from your local data center(s) and from public cloud providers.

The solution is expected to be cost effective, of course, but the greater benefits come from business agility and consistent governance.


Use Cases:

The evaluation was focused on 3 main use cases, all requiring that end users order the deployment of a complex software stack from a service catalog: the target for the deployment can be either the private cloud or the public cloud, or a combination of the two. These are the areas where the implementation demonstrated the value of the multi-cloud solution:
  • Business Intelligence (self-deployment of R Studio and additional tools)
  • ETL (self-deployment of a common software for ETL that data scientists would use in autonomy)
  • High Performance Computing (HPC) on OpenStack, with the integration of a DevOps pipeline.

Subject matter experts were provided from different lines of business in the company to support the implementation activities and evaluate the result. 
The use cases represent some frequent activities that the company needs in their usual business, especially in R&D. Improving efficiency and quality in the associated processes will have an impact on the overall business outcome. Applications were selected for the self service catalog that are deployed frequently (every week) and whose installation process takes time (some man days, accounting for both infrastructure and software setup), delaying business objectives.

Time:

All the activities in the project were delivered in time (six weeks), including the setup of the hardware and software systems for the hybrid cloud, the implementation of the 3 main use cases and some additional use cases, the functional tests and the stress tests. This is a demonstration that a proper selection of the technology and a good organization of the project allow for immediate return.
Challenges like setup of the remote access to the lab for remote experts, constraints in the networking and security configuration in the lab, some missing information about the process to install the applications (essential to build the model for the automation) slowed down the implementation. See Lessons learned.

Software Stack:

This is a complete end to end solution: its adoption will happen with a phased approach, starting from the components that grant an easy and immediate impact on the most critical business requirements and adopting some non-functional components later to complete the architecture. The extension from private cloud (based on any combination of VMware, other hypervisors and OpenStack) to a hybrid cloud (integrating AWS, Azure and more) was very quick (it is just a matter of configuration and definition of the governance model). Checkmarks in the picture show what we realized in the short timeframe of the project. The rest is part of a phased plan. The blue boxes show the components provided by Cisco.


a full solution for the hybrid cloud

The fundamental component in this architecture is Cisco CloudCenter (CCC), that has 2 main roles: 
- providing an orchestration solution that offers users the possibility to self-deploy complex software stacks from blueprints offered in a catalog, 
- brokering cloud resources from both private and public clouds (in the project we integrated VMware, OpenStack and AWS, but more clouds are supported).
CloudCenter manages the lifecycle of software applications in the cloud (at a level of abstraction where the underlying physical infrastructure does not matter).
The OpenStack use cases for HPC are supported by a Cisco Validated Design named UCSO: it includes a reference architecture for running the Red Hat OSP8 distribution on a certified hardware platform made of Cisco UCS servers and Nexus 9000 switches. The setup process and the operations are defined by the official deployment guide and Cisco's technical support assumes responsibility on the entire stack, including the Red Hat software.
The management of the entire DC infrastructure from a single orchestration platform was made possible by Cisco UCSD (UCS Director): a single dashboard and workflow engine to manage servers, network and storage, both physical and virtual. The status, the performances and the remaining capacity of all the systems were monitored with Cisco UCSPM (UCS Performance Manager).


Benefits of the architecture we implemented

The implementation of the multi-cloud solution demonstrated the major benefits that a hybrid cloud delivers.
  • A consistent architecture based on software (and eventually hardware) components that integrate easily and satisfy all the business and technical requirements.
  • All components in the architecture are loosely coupled and their integration is based on standard protocols and documented open API. As a consequence, every component can be replaced by an alternative solution (from a different vendor, from the open source, from a custom build) with no fear of vendor lock in.
  • The adoption of a hybrid cloud solution can happen gradually, starting with a core implementation with the most critical components (e.g. CCC, ACI and UCSO), adding more features as a second step (infrastructure automation and monitoring) with UCSD and UCSPM, eventually a unified service catalog and ITSM portal later.

Lessons Learned:

  1. use cases
  2. network topology
  3. security and trust
  4. reusable work (repositories and services)
  5. engage SME and business owners
  6. document
  7. refine (iterations, devops)

Use Cases 
The selection of the use cases is important. You need a quick return to demonstrate the value of the hybrid cloud: the adoption of the hybrid model should address immediate business needs, that the end users can appreciate, rather than be driven just by an industry trend. 
IT projects should not start because a new technology is very smart, but because the outcome makes the business easier and more productive.
Always engage your end users in the planning phase and avoid academic use cases that have a limited appeal on the decision makers. In this project we were lucky because the preparation was done by the steering committee very well in advance.
Once the models for the automation were ready, we could test any combination of the deployment for the application tiers: everything in the private cloud, everything in the public cloud, or the front end deployed on one side and the back end on the other side. The benchmarking capabilities of the product (CCC) allowed to compare the price/performances ratio of the different options based on vSphere, Openstack and AWS - specifically for each application, with tailored reporting.
 
Network Topology
A hybrid environment connects - by definition - areas that were designed separately (your datacenter and the public cloud). They have security policies and configurations that are not meant to work together, and this makes it difficult. Before you start the setup, dedicate the right time to collect all the requirements and to design the connectivity properly. 
We had some issues with the network proxies and the firewalls because of the protocols and ports that we needed to open to allow a proper integration of the Cloud Management Platform (running on premise) with the orchestration engine (with one instance running in each cloud region used in the project, to leverage the local API exposed by the cloud provider and to manage the lifecycle of the applications in the cloud). 

communication among the components of Cisco CloudCenter

Another important requirement is to have a unique repository for all the artifacts, the blueprints and the installation packages for the applications: it should be reachable from all the target clouds that you plan to use, regardless its location (it can be either in the private or in the public cloud, but all the servers you deploy will access it to stand up a new instance of the application). 
The same applies to any public repository that is used in the setup of the applications (both commercial software and open source components, e.g. packages installed using yum).
See also CCC Components Overview for more detail.

Security and Trust
It's important that a good level of trust is established between the architects building the hybrid cloud and the operations team, especially the security guys. Special rules and new policies need to be setup to allow the new platform to work, it's impossible to keep the same old governance model that addresses a single end user identity. 
Sometimes I feel like I'm living - again - the same conflict that I had with Database Administrators, when I tried to configure JDBC database connection pools in the first Java application servers in the 80's. The system should be trusted, and a delegation of the decisions (authentication, authorization and audit) accepted.

Reusable work (repositories and services)
When you model a software application to automate its deployment, you should identify any building block that can potentially be reused in a different model. If you create a reusable (parametric) deliverable and save it individually in a common repository, next time you'll have the work ready to be reused.
This applies to architectural building blocks like database servers, web servers, load balancers, firewalls, distributed caches, etc. 
If they have been created as separate services, instead of just being a part of a monolithic model, they will appear in your designer's palette everytime you model a similar application and you can drag and drop them in the topology. We did that in the project and we saved a lot of time in the implementation. 

Engage SME and business owners
It is important that subject matter experts (SME) collaborate at the definition of blueprints and the build of the automation model. Even though documentation exists for the deployment of the application, you should work together. 
The user knows all the requirements, he knows how to verify and troubleshoot, he has encountered all the setup issues already.
I've learned that the best way to document the setup process for an application, so that you can use it as a reference for the automation, is to ask the SME to install it in front of you in a clean environment where the application was never run, and record a video of the process. It's faster than writing documentation, more complete and reliable. We did that using the desktop sharing feature in Webex and we recorded the sessions.  

Document
While you do the work, keep track of all the steps. Take (maybe informal) notes, but mostly take a lot of screen shots to document what you did. You can keep them on a wiki or on a shared folder, they will help a lot when you have time to create the formal documentation of the project. If you need to troubleshoot, eventually involving other people, this information will be unvaluable.
Of course, versioning and taking snapshots of all deliverables also helps in case you need to go back for whatever reason. 

Refine (iterations, devops)
Create the implementation for a minimum viable product (MVP) as soon as you can. Get the product (i.e. the entire self service catalog, or just the implementation of a single application blueprint) to early customers as soon as possible, to get their feedback before you go too deep in the implementation.
Applied to a hybrid cloud scenario, this will help to evaluate:
- quality of the service you are building, including documentation
- how much the users need it and use it in the real world
- performances of the distributed environment and any bottleneck (network, computing, configuration)
- security implications 
You will have all the time to make it perfect, through iterations that improve the implementation, collect feedback, allow for tuning the design and the configuration. No need to work in a hurry and make mistakes, while you keep your users waiting for the final "perfect" product but they don't see any progress.

October 12, 2016

Just 1 step to deploy your applications in the cloud(s)


As described in my previous post about Terraform, the deployment environment for a new application can be created "on demand" by configuring physical and virtual resources.
Good open source products allow to describe the desired state and to automate the setup of a target infrastructure.
They can also deploy your software application and configure it properly.

But is some use cases this is not enough.
You might want to offer your users - depending on their needs and their skills - a visual catalog in a web portal.
You might want to apply a governance model based on policies, use different clouds as possible targets for the deployment, offer a easy way to manage the life cycle of the deployment (start, stop, scale up/down, terminate) and get reports on usage of the resources.

If this is the case, there are good solutions available.
One of these is Cisco Cloud Center, a powerful tool that offers two main use cases: 
  • modeling the deployment of a software stack (creating a template or blueprint for common deployments) and 
  • brokering cloud services (different resource pools available from a single catalog).

A easy to consume (and manage) self service catalog
A easy to consume (and manage) self service catalog


Open Source or commercial products?


In the same project where I used Terraform to deploy Apache on Openstack, I also used Cisco Cloud Center to deploy a portal application on Openstack.
But at the same time, I offered the possibility to target the same deployment to a public cloud (AWS in this particular case) or to the private cloud (choosing between Openstack and vmware in this particular case). No duplication of the effort was needed, because the model you creat is not referred to a specific cloud as a target. It will be matched, when a user orders it, with one of the cloud avaliable for him or for his project.
So I was able to show the difference between a free, open source solution (Terraform) and a commercial product (Cloud Center) in a similar scenario.

The second option addresses different needs of the organization and offers a richer solution.
It’s up to you to evaluate which one fits your requirements better. 


Modeling, policies and multitenancy


One of the differences is that Cloud Center offers a graphical editor to model the topology and the dependencies among all the building blocks of your deployment.
You have a library of services (software applications from a repository, physical and virtual services like load balancers and firewalls).
Services can be dragged and dropped in the editor, then you set their properties and dependencies. 
The architecture of the application you're modeling can be based on a single server or a number of servers with different roles.
If the application architecture has multiple tiers, every tier gets its own attributes and policies: as an example, you can set the minimum and maximum number of instances in a cluster of web servers (or application servers or database servers). 
Autoscaling policies will tell the orchestrator to increase or decrease the number of servers based on metrics like consumption of cpu or memory, inbound/outbound traffic, etc.
Everytime the cluster changes, the orchestrator will modify the configuration of load balancers and firewalls accordingly: no manual intervention is needed.
Models are saved in the catalog and offered to users in a multitenant organization: every tenant is given a portion of resources (target cloud environments) and services (models available in the catalog to deploy applications) that the tenant administrator can offer to his own users and groups... and sub tenants. Every tenant cannot see other tenants' stuff.

a graphical editor to model the deployment of your applications
A graphical editor to model blueprints for application deployment in hybrid cloud

Dashbooard and Reporting


Every user has a dashboard that shows the consolidated information about all the applications he has deployed (or the other users in the same tenant), and can manage the lifecycle of all the deployments.

Of course the administrator of the system sees the global view including all the assets.
Active VM per cloud and per application are shown in the dashboard, as well as associated costs.



a unified dashboard for all your deployments in all the clouds
Cloud Center's Dashboard


A powerful reporting features allows to filter deployments and costs by user or group, application, environment and cloud.
Data can also be exported in different formats, to be consumed by humans and other systems.


powerful reporting allows for governance, showback and chargeback
Unified reporting



Architecture

The architecture of the Cloud Center product is based on two Virtual Machines: the Manager (CCM) and the Orchestrator (CCO).
The Manager is the engine where policies and application models are defined, and where the user portal runs. The Orchestrator lives within each of the target clouds (indeed, there is one CCO in each cloud region), receives commands from the Manager and executes them locally using the API of the cloud platform.
Cisco provides orchestrator images that are specialized for every cloud supported by Cloud Center.  So you have a single place to manage all your cloud resources, and a single model to maintain: you don't need a model, or a workflow, or a script for every target cloud where the syntax of that specific API is used. You create a single model, that is completely decoupled from the target of the deployment: this reduces the amount of work (a single model instead of many) and makes the maintenance of the model easier and more consistent (you don't have to evolve many models for the same application).

 
One manager drives a separate orchestrater for every cloud region you have access to
Cisco Cloud Center architecture


Comparison


Two solutions for the same use case, one for free and one at a cost?
Indeed they address different requirements: as described above, Cloud Center is for enterprise organizations that need to rationalize their usage of cloud resources. It is used by the corporate IT to provide flexibiliy and agility to their developers (within a governance model), to standardize the architecture of their projects based on blueprints (including what products, what versions, what setup configuration they prefer) and to get reports on consumption.

Service providers can use Cloud Center to broker third parties' resources, offering a single catalog to their customers. The hierarchical multi tenant organization and the sophisticated cost models that can be offered make it simple.

I suggest you to consider it if you are using, or plan to use, two or more cloud providers (counting also your private cloud or your virtualized data center). You will see an immediate benefit in terms of compliance and efficiency.

References




June 14, 2016

Why don't you try Openstack (without getting your hands dirty)?


Is Openstack ready?
But, more important: are you ready for Openstack? 

 

are you ready for Openstack?


Openstack is mature (but complex).

Surveys and statistics show that Openstack is mature and provides a number of benefit to a broad spectrum of users, from small to large enterprises and service providers.  
Almost every professional in the IT (including CIOs and CTOs) knows the advantage that Openstack would offer to his organization.
But many are also aware of the complexity of the technology, the need for new operational processes and skills to set up and operate Openstack.
A scalable and reliable production environment is different from a lab where you explore the capabilities of the new platform.
The journey to a mature adoption of Openstack is not easy and you need to invest time and money.
In addition, when you hire people (or train yours), there is a possibility that another company steals them with the offer of a better salary, given the scarcity on the market.

So, many IT organizations - excluding cloud service providers, because that’s exactly their business - started wondering if it’s worth spending time in running the infrastructure, rather than running their business applications.
If you are not a cloud provider, that makes money selling IaaS, why should you dedicate additional effort to installation, monitoring, troubleshooting and release upgrades to ensure reliability and performances to your applications (that’s the only asset you should care of, because your business relies on them)?

Focus on your real business.

Why don’t you delegate all the responsibility to a provider, signing a contract that puts the above tasks and SLA on them?
Doing so, you would be free to use Openstack, getting all the benefit that you expect from it, without the burden of the learning curve and the organization implied by the Openstack adoption.
You would focus on using the infrastructure to develop and run your applications, no longer on running the infrastructure itself.

delegate the responsability of the service to a specialized provider


That is called a managed service.

You own the infrastructure and exploit the value of your Data Center assets (you don’t just drop them to escape to a public cloud).
An expert team (it’s just their business) installs Openstack in your DC and operates it everyday in a HA (high availability) configuration, granting 99.99% uptime.
They take care of all the version upgrades and the compatibility of all the new features released by the community by using a certified configuration.
The user interface (the Horizon console, the Openstack API and command line interface) is available to you so you can deploy virtual server instances, networks, storage at will. You get complete and granular reporting on the health of the system and its performances.
You are the owner, but you don't get your hands dirty with the complex stuff   :-)
You pay them for the service, they grant you the SLA.

Just taste if you like Openstack.

The approach described above can be a strategical decision, because you want to focus on your business applications.
But you could also use this trick to stand up a Openstack environment in very short time, test it (I mean if your organization adapts to it, if your applications run well, if the operational model - IaaS at home, on your infrastructure, no cloud provider lock in - is good for you, if your developers are more productive) for a while, e.g. 3 or 6 months, and finally decide if you want to adopt it. 
At that time you can choose between continuing with the managed service or doing it yourself.
It is a zero risk trial of the technology and of the processes: if you don’t like, you haven’t wasted any time and effort to stand it up so you can happily retreat.
You simply do not renew the service contract and that’s all: you have made a real informed decision about the adoption of Openstack.


no provider lock in for your cloud



Cisco Metapod: Openstack as a managed service.

Cisco has a offer that allows you to do what I described above, that comes from the acquisition of a company whose business was exactly Openstack as a managed service, on your premises.
They had a Openstack distribution of their own, optimized and hardened to provide a smooth and effective service.
Now, thanks to a strong partnership with Red Hat, the team is using the Red Hat Enterprise Linux Openstack distribution (OSP8, based on Liberty).

The essential features of this service are:
- easy start: entry level contract for 90 days
- ready to go live in 2-3 weeks from the engagement
- HA included
- the infrastructure to run Openstack can either be yours or provided by Cisco
- both the Openstack API and the AWS API are exposed by the system

And the infrastructure to run it in production can be as simple as this:


the servers and the switches you need to run Openstack


The value you can get from it: a well defined SLA, installation included, maintenance and upgrade included, no cloud provider lock in.

advantages of the Cisco Openstack managed service: Metapod


I believe that Cisco Metapod is a very good option to start with Openstack.
You can put your foot in the water to test the temperature, then decide to take a bath if you like it.

you can decide if you like Openstack without investing in a big project


References

Openstack users survey 
Cisco Metapod official page
Cisco and Openstack on this blog 

February 23, 2016

Become a cloud provider in 3 months

This is the story of a company that decided to become a Cloud Service Provider.
They were already a successful IT outsourcer in the financial industry, with many customers' environments running in their data center.
Outsourcing was a healthy business but they started having some challenges, due to slow and inefficient provisioning processes and operations.
Any new request from a customer started a new project, so their customers started exploring public cloud services to get more flexibility and speed.
For this reason, the company decided to adopt the cloud delivery model and to offer their customers a self service catalog.



Of course a cloud project cannot be done in one night, so they were cautious in their approach.
Both technology and operational processes needed to be proven before embarking in such a challenge, but the traditional waterfall methodology made the expected return appear uncertain and distant.
To make things worse, they had tried to implement a PaaS project with a different vendor and they had spent a lot of money without tangible return.

I was engaged to support the evaluation of a new IaaS catalog that could evolve to PaaS and to self service applications management.
I made sure that the Business and IT strategy were in sync and I proposed to start with small steps to validate the approach. I also invited them to qualify the quick wins that they would expect to justify the investment and show the stakeholders an immediate return, so that the project lived enough to reach the expected success.
As you know well, many projects last too much and die before showing any business return.

We analyzed the current situation and defined a future vision. This was the driver for a gap analysis and for the prioritization of user stories, that we decided to implement in short iterations (sprints of 2 weeks, according to the Agile Scrum methodology).
Their data center was mainly based on Cisco networks and servers, but this was not the main reason for selecting the Cisco software stack for the cloud project.
After the initial workshops, some product demo and talks about other projects they understood that our people - and our partner company that implemented the project with them - were experienced enough to plan the project seriously and to chase the quick wins that we all considered so important.

The Cloud Management Platform chosen for the project was the Cisco ONE Enterprise Cloud Suite (aka ECS).



One of the most important features considered in the decision was the possibility to create flexible templates, later exposed as self service options in the end user catalog, for the deployment of complex applications. A set of servers with different roles, and all the networks needed to make them work, can be provisioned as a dedicated and virtually separated environment (multi tenancy in a shared infrastructure that offers economy of scale).

As an example, the following picture shows a environment that could be ordered - fully configured - with a single click. It is based on a component of the ECS architecture that is named VACS (virtual application cloud segmentation):


It was easy to engage the SME (subject matter experts) for the servers, the network, the storage and the virtualization in the customer organization and to ask them to define the basic policies that we would use as building blocks for all the services to be offered.
This model-based implementation is quicker to build and easier to maintain, and it can be exposed to the end users in a way that they understand and trust soon.

The automation that we built was considered useful by the SME (after winning their initial suspicion, because every good craftsman loves manual work) because it set them free from the manual operations that previously made their work tedious and error prone.
Delegating the configuration to an automated service gave their customers a faster service and a higher quality (no rework needed because of manual errors or missing information).


One more component in the architecture is the Stack Designer.
It is a tool provided by the Cisco ECS to create templates for application provisioning. It takes IaaS templates - made in the infrastructure management layer, that in our case is UCSD, to deploy a topology of servers and networks - and layers the software stack on top of them.


You can decide what software products (or custom applications) must be installed - and configured based on the input parameters provided by the end user - including monitoring agents and backup agents, and save this new template in the repository.
The integration with Puppet, an open source solution used to provision software applications, is leveraged to install and configure the entire software stack from the images in the repository.


The new template can now be offered as a self service option in the catalog, so that the end users don't need to install and configure the software stack themselves. A end-to-end solution is provided, up and running and ready to be used.
All the components of the ECS solution are pre-integrated and this makes the project faster than you would expect. But, since they communicate through standard protocols and open API, every component of the architecture could be replaced by an alternative product (from a different vendor or from the open source community). You should not be afraid of vendor lock in  :-)

Agile Delivery

In terms of project delivery, the following table shows the different iterations that allowed to complete the delivery in only 3 months.
But the amazing result is that at every sprint (i.e. every 2 weeks) new use cases were available in a usable environment.
The first demo to a real customer (a customer of my customer) was done after 2 months from the start of the project, and the first customer was onboarded after the 5th sprint (i.e. 2.5 months).



Conclusion

This quick win demonstrates that even complex projects like building a public cloud platform can be done in a reasonable amount of time.
The era of endless projects, based on complex technology and measured in function points, has passed forever.
There are simple solutions (like ECS) that make your work easier, but a good organization and the right methodology allow for incremental building and refinement of the solution. Every iteration of the project delivers a usable result in the production environment, and you don't need to wait the completion of the entire project to start using the solution.
If you are a service provider, you can start selling your services soon and produce a ROI.
More services will be added incrementally and the catalog will be richer at every iteration.


References

Cisco Enterprise Cloud Suite
and its individual components:
- Cisco PSC - Prime Service Catalog 
- Cisco UCSD - UCS Director
- Cisco VACS - Virtual Application Cloud Segmentation

Fast IT
Cisco Prime Service Catalog in action: Cisco eStore

Scrum (agile development)