Showing posts with label Docker. Show all posts
Showing posts with label Docker. Show all posts

May 10, 2016

A simpler framework for hybrid cloud

Hybrid cloud is one of top mind projects for most IT managers, and there's little content that one can add to be original   ;-)

The hype and the attempt of many vendors (including... Cisco) to provide relevant solutions have populated the space of an incredible number of offers that make it hard to distinguish what works, what's manageable and cost effective, from what is only marketecture.




Recently Cisco decided to invest even more on cloud and, with the advent of a new CTO and some acquisitions, a revision of our approach to hybrid cloud made it easier and more effective. This post is not from official marketing and is not echoing company's direction: it's my attempt to rationalize my understanding of the new framework and to solicit your comments and feedback, so that I can leverage it when I discuss with my customers and partners.
The following picture represents the area where Cisco plays a role, offering hardware and software solutions.
When it comes to the software stack to manage the infrastructure and provide services to the users, we have a mix of Cisco products, open source solutions and integration with 3rd parties. The objective is to offer a set of pre-validated stacks that can match the different needs, granting a deterministic result.



I shared some thoughts with a group of colleagues because we're planning educational activities for our field people: instead of just providing a reference architecture (that would end being a list of products to be forced in every deal) we tried to represent the functions in the system as components of a framework, from which we'll pull the specific architecture for a given project. This, used cum grano salis, should help to be pragmatic and realize quick wins (for both the customers - think of Fast IT initiatives - and of course for Cisco).

As a result, next picture is separating the different functional layers so that they can be explained to sales guys and to customers.
It could also help to manage the possible overlap with alternative solutions that customers may choose – or already have – because every element is replaceable in the picture, based on the open API they expose/consume (as well as any well designed 3rd party product).

It is important to note that the top two layers in the picture are optional, since not all customers need those functions in their system. Based on the level of Governance that they want to have, the existing processes and the way they develop business applications (or use commercial software that only need a resource pool to be deployed), the entry point could be directly at the third layer (Multi-Cloud Management) and ITSM and PaaS would be removed.




So, while we explain all the possibilities as said above, we need to make them feel confident that it’s doable and not overly complex.
In that regard, my motto is that “cloud is not a product (or a set of), it’s a project and it’s complex in nature… regardless the products set you choose”. Generally the cost of hardware and software products is lower than development and consulting services, and customers know it.
If we can claim that a pre-built integration makes the project easier (and we can), I would stress the value of reducing the project risk and delivering outcomes faster rather than a cheaper implementation.

Selling licenses can be (almost) easy, but driving adoption with business outcomes for customers is different. Finally Cisco has built a practice that can deliver IT projects effectively and recruited partners that do the same: customers have different options to choose from.

Now, in the context of a end to end strategy defined with the customer, we can deliver projects based on agile methodologies (e.g. Scrum) and implement the architecture layers with a bottom up approach: from a strong capability to automate the Data Center (and the hybrid cloud) you can create services that are surfaced up to the consumption layers, including a self service catalog.


Software Defined What?

The bottom up approach stresses the value of the API exposed by UCS and ACI (with the further evolution from basic programmability to policy-based management, that I'm not mentioning yet - look out for next post). With the power and the granularity of those API, you can really realize a fully Software Defined Data Center (SDDC): servers and networks can be shaped via software interfaces.
By the way, I take the opportunity here to clarify that Software Defined Data Center does not mean Software Implemented Data Center: you don't necessarily need a software overlay that mimics the behavior of the hardware (living as a separate entity), you need software controllers that drive the shape and the behavior of both physical and virtual resources in the DC as a single system.
Better if they do that based on policies... like the Cisco architecture does  :-)
You will see a post dedicated to policies and application intent soon on this blog.



Competition?

We also recognize that many customers have already an ITSM solution in place, or any other form of governance. So we don't engage in competitive fights, like imposing Cisco Prime Service Catalog vs Service Now, but we rather integrate our solution with the existing components: this is a sort of compromise with a competitor that hurts my pride, but since it's for our customers' benefit... it's a good solution.

Cisco Cloud Center as a broker: the recent acquisition of Cliqr brings a great solution to Cisco to address the multi-cloud management use cases, the most important ones for the majority of customers. In the logical schema above you can see that the hybrid cloud scenario has been qualified better as Multi-Cloud management.
This reflects the fact that having a application deployed partly in your Data Center and partly in the public cloud is still a relevant use case, but many companies are more attracted by other scenarios... like moving from one project stage to next (e.g. Dev-Test-QA-Prod) using different resource pools (on premise or in cloud), or moving their assets from one cloud provider to a different one.


Cloud Brokering and Multi Cloud Management

In the first one (promotion to next stage) it could be useful to leverage resources that are allocated based on business convenience (e.g. cost or flexibility) or compliance (e.g. data sovereignty), so the application and all the needed infrastructure are moved back and forth to the public cloud.
In the second the driver could be a dual provider strategy, or maybe a change in the market conditions that makes one provider more appealing than the current one, or a strategic switch from private cloud to public (or vice versa).


In all these cases, we offer a solution to deploy a software stack (a complete custom application, a development platform, or a commercial software product) as a self service option, where the target can be selected dynamically from a list of available clouds.
You can deploy to your local private cloud, based on vmware or any other virtualization solution, or to a Openstack based cloud, or to any of the public cloud providers if you have an account there.
Any resource pool is a possible destination for the deployment (and the life cycle management, including autoscale or retirement of the application).
The model of the deployment of the application is completely de-coupled from the selection of the target, thanks to the capabilities of the orchestrator that can configure the needed resources in almost any cloud transparently.
It uses the API exposed by the element managers of a multi vendor infrastructure on premise (e.g. vcenter, UCS Manager, the ACI controller, etc.) and those exposed by public clouds like AWS, Azure, etc.



From a logical schema to a real deployment

So we can offer users a different entry point, based on their business needs (they might need a ticketing system, or a self service catalog, a PaaS solution or directly the web portal of the multi cloud manager to model deployments and deliver them).
The customer can have one or more resource pools, allocated wherever he likes (local or in cloud), and let the broker direct the selection of the target based on predefined policies.

The schema in next picture presents different products at every layer: a solution can be based on one of them, or a combination. We have the flexibility to match the specific needs with products from Cisco, from 3rd party vendors or open source.
As an example, MANTL is a new open source project that makes the development of microservices easier if you build cloud native applications.




I will expand the detail of the single products and the open source solutions shown in this picture in my next post.
Stay tuned...


References

http://www.cisco.com/c/en/us/solutions/executive-perspectives/fast_it.html
http://www.cisco.com/web/solutions/trends/futureofit/why-cisco.html
http://MANTL.io
http://Github.com/CiscoCloud/microservices-infrastucture 
http://lucarelandini.blogspot.it/2015/10/devops-docker-and-cisco-aci-part-1.html
http://lucarelandini.blogspot.it/2015/03/aci-for-dummies.html
http://lucarelandini.blogspot.it/2015/09/the-phoenix-project-how-devops-can.html




October 20, 2015

DevOps, Docker and Cisco ACI - part 2

This post is a follow up to the initial discussion of the DevOps approach based on Linux containers (specifically with Docker).
Here I elaborate on the advantage provided by Cisco ACI (and some more projects in the open source space) when you work with containers.

Policies and Containers  

Cisco ACI offers a common policy model for managing IT operations.
It is agnostic: bare metal, virtual machines, and containers are treated the same, offering a unified policy language: one clear security model, regardless of how an application is deployed.


ACI models how components of an application interact, including their requirements for connectivity, security, quality of service (e.g. reserved bandwidth for a specific service), and network services.   ACI offers a clear path to migrate existing workloads towards container-based environments without any changes to the network policy, thanks to two main technologies:
  • ACI Policy Model and OpFlex   
  • Open vSwitch (OVS)   

OpFlex is a distributed policy protocol that allows application-centric policies to be enforced within a virtual switch such as OVS.
Each container can attach to an OVS bridge, just as a virtual machine would, and the OpFlex agent helps ensure that the appropriate policy is established within OVS (because it's able to communicate with the Controller, bidirectionally). 



The result of this integration is the ability to build and manage a complete infrastructure that spans across physical, virtual, and container-based environments.
Cisco plans to release support for ACI with OpFlex, OVS, and containers before the end of 2015.


Value added from Cisco ACI to containers

I will explain how ACI supports the main two networking types in Docker: veth and macvlan.
This can be done already, because it's not based only on Opflex. 

Containers Networking option 1 - veth

vEth is the networking mode that leads to virtual bridging with br0 (a linux bridge, the default option with Docker) or OVS (Open Virtual Switch, usually adopted with KVM and Openstack).
As a premise, I remind you that ACI manages the connectivity and the policies for bare metal servers, VMs on any hypervisor and network services (LB, FW, etc.) consistently and easily:

Cisco ACI as the any to any network integration in the data center

On top of that, you can add containers running on bare metal Linux servers or inside virtual machines (different use cases make one of the options preferred, but from a ACI standpoint it's the same):


That means that applications (and the policies enabling them) can span across any platform: servers, VM, containers at the same time. Every service or component that makes up the application can be deployed on the platform that is more convenient for it in terms of scalability, reliability and management:


And the extension of the ACI fabric to virtual networks (with the Opflex-enabled OVS switch) allows applying the policies to any virtual End Point that uses virtual ethernet, like Docker containers configured with the veth mode.

ACI model brought to all workloads at the same time: Docker, VM, bare metal


Advantages from ACI with Docker veth:

With this architecture we can get two main results:
- Consistency of connectivity and services policy between physical, virtual and/or container (LXC and Docker);
- Abstraction of the end-to-end network policy for location independence altogether with Docker portability (via shared repositories) 

Containers Networking option 2 - macvlan

MACVLAN does not bring a network bridge for the ethernet side of a Docker container to connect.
You can think  MACVLAN as a hypotetical cable where one side is the eth0 at the Docker and the other side is the interface on the physical switch / ACI leaf.
The hook between them is the VLAN (or the trunked VLAN) in between.
In short, when specifying a VLAN with the MACVLAN, you tell a container binding on eth0 on Linux to use the VLAN XX (defined as access or trunked).
The connectivity will be “done” when the match happens with the other side of the cable at the VLAN XX on the switch (access or trunk).

At this point you can match vlans with EPG (End Point Groups) in ACI, to build policies that group containers as End Points needing the same treatment, i.e. applying Contracts to the groups of Containers:


Advantages from ACI with Docker macvlan:

This configuration provides two advantages (the first one is common to veth):
- Extend the Docker containers based portability for applications through the independence of ACI policies from the server's location.
- Performance increase on network throughput from 5% to 15% (mileage varies, further tuning and tests will provide more detail) because there’s no virtual switching consuming CPU cycles on the host.



Intent based approach

A new intent based approach is making its way in networking. An intent based interface enables a controller to manage and direct network services and network resources based on describing the “Intent” for network behaviors. Intents are described to the controller through a generalized and abstracted policy semantics, instead of using Openflow-like flow rules. The Intent based interface  allows for a descriptive way to get what is desired from the infrastructure, unlike the current SDN interfaces which are based on describing how to provide different services. This interface will accommodate orchestration services and network and business oriented SDN applications, including OpenStack Neutron, Service Function Chaining, and Group Based Policy.

Docker plugins for networks and volumes

Cisco is working at a open source project that aims at enabling intent-based configuration for both networking and volumes. This will exploit the full ACI potential in terms of defining the system behavior via policies, but will work also with non-ACI solutions. 
Contiv netplugin is a generic network plugin for Docker, designed to handle networking use cases in clustered multi-host systems.
It's still work in progress, detail can't be shared at this time but... stay tuned to see how Cisco is leading also in the open source world.



Mantl: a Stack to manage Microservices  

And, just for you to know, another project that Cisco is delivering is targeted at the lifecycle and the orchestration of microservices.
Mantl has been developed in house, as a framework to manage the cloud services offered by Cisco. It can be used by everyone for free under the Apache License.
You can download Mantl from github and see the documentation here.

Mantl allows teams to run their services on any cloud provider. This includes bare metal services, OpenStack, AWS, Vagrant and GCE. Mantl uses tools that are industry-standard in the DevOp community, including Marathon, Mesos, Kubernetes, Docker, Vault and more.
Each layer of Mantl’s stack allows for a unified, cohesive pipeline between support, managing Mesos or Kubernetes clusters during a peak workload, or starting new VMs with Terraform. Whether you are scaling up by adding new VMs in preparation for launch, or deploying multiple nodes on a cluster, Mantl allows for you to work with every piece of your DevOps stack in a central location, without backtracking to debug or recompile code to ensure that the microservices you need will function when you need them to.

When working in a container-based DevOps environment, having the right microservices can be the difference between success and failure on a daily basis. Through the Marathon UI, one can stop and restart clusters, kill sick nodes, and manage scaling during peak hours. With Mantl, adding more VMs for QA testing or live use is simple with Terraform — without one needing to piece together code to ensure that both pieces work well together without errors. Addressing microservice conflicts can severely impact productivity. Mantl cuts down time spent working through conflicts with microservices so DevOps can spend more time working on an application.






Key takeaways

ACI offers a seamless policy framework for application connectivity for VM, physical hosts and containers.

ACI integrates Docker without requiring gateways (otherwise required if you build the overlay from within the host) so Virtual and Physical can be merged in the deployment of a single application.

Intent based configuration makes networking easier. Plugins for enabling Docker to intent based configuration and integration with SDN solutions are coming fast.

Microservices are a key component of cloud native applications. Their lifecycle can be complicated, but tools are emerging to orchestrate it end to end. Cisco Mantl is a complete solution for this need and is available for free on github.


References

Much of the information has been taken from the following sources.
You can refer to them for a deeper investigation of the subject:

https://docs.docker.com/userguide/
https://docs.docker.com/articles/security/
https://docs.docker.com/articles/networking/   
http://www.dedoimedo.com/computers/docker-networking.html
https://mesosphere.github.io/presentations/mug-ericsson-2014/  
Exploring Opportunities: Containers and OpenStack
ACI for Simple Minds
http://www.networkworld.com/article/2981630/data-center/containers-key-as-cisco-looks-to-open-data-center-os.html
http://blogs.cisco.com/datacenter/docker-and-the-rise-of-microservices    
ACI and Containers white paper 
Cisco and Red Hat white paper   
Opendaylight and intent
Intent As The Common Interface to Network Resources
Mantl Introduces Microservices as a Stack
Project mantl



October 9, 2015

DevOps, Docker and Cisco ACI - part 1

In this post I try to describe the connection between the need for a fast IT, the usage of Linux containers to quicky deploy cloud native applications and the advantage provided by Cisco ACI in containers' networking.
The discussion is split in two posts to make it more... agile.
A big thank you to Carlos Pereira (@capereir), Frank Brockners (@brockners) and Juan Lage (@JuanLage) that provided content and advice on this subject. 

DevOps – it’s not tooling, it’s a process optimization


I will not define DevOps again, you can find it in this post and in this book.
I just want to remind that it’s not a product or a technology, but it’s a way of doing things.
Its goal is to bring fences down between the software development teams and the operations team, streamlining the flow of a IT project from development to production.
Steps are:
  1. alleviate bottlenecks (systems or people) and automate as much as possible, 
  2. feed information back so problems are solved by desing in next iteration, 
  3. iterate as often as possible (continuous delivery).



Business owners push the IT to deliver faster, and application development via DevOps is changing the behavior of IT.
Gartner defined the Bimodal IT as the parallel management of cloud native applications (DevOps) and more mature systems that require consolidated best practices (like ITIL) and tools supporting their lifecycle.



One important aspect of DevOps is that the infrastructure must be flexible and provisioned on demand (and disposed when no longer needed). So, if it is programmable it fits much better in this vision. 

 

Infrastructure as code

Infrastructure as code is one of the mantra of DevOps: you can save the definition of the infrastructure (and the policies that define its behavior) in source code repository, as well as you do with the code for your applications.
In this way you can automate the build and the management very easily.

There are a number of tools supporting this operational model. Some examples:



One more example of tool for DevOps is the ACI toolkit, a set of python libraries that expose the ACI network fabric to DevOps as a code library.

 
You can download it from:


The ACI Toolkit exposes the ACI object model to programming languages so that you can create, modify and manage the fabric as needed.
Remember that one of the most important advantage of Cisco’s vision of SDN is that you can manage the entire system as a whole.
No need to configure or manage single devices one by one, like other approaches to SDN (e.g. Openflow).




So you can create, modify and delete all of the following objects and their relationships:




Linux Containers and Docker


Docker is an open platform for Sys Admins and developers to build, ship and run distributed applications.  Applications are easy and quickly assembled from reusable and portable components, eliminating the silo-ed approach between development, QA, and production environments.

Individual components can be microservices coordinated by a program that contains the business process logic (an evolution of SOA, or Service Oriented Architecture). They can be deployed independently and scaled horizontally as needed, so the project benefits from flexibility and efficient operations. This is of great help in DevOps.

At a high-level, Docker is built of:
- Docker Engine: a portable and lightweight, runtime and packaging tool
- Docker Hub: a cloud service for sharing applications and automating workflows
There are more components (Machine, Swarm) but that's beyond the basic overview I'm giving here.



Docker’s main purpose is the lightweight packaging and deployment of applications.   

Containers are lightweight, portable, isolated, self-sufficient "slices of a server" that contain any application (often they contain microservices).
They deliver on full DevOps goal:
- Build once… run anywhere (Dev, QA, Prod, DR).
- Configure once… run anything (any container).  

Processes in a container are isolated from processes running on the host OS or in other Docker containers.
All processes share the same Linux kernel.
Docker leverages Linux containers to provide separate namespaces for containers, a technology that has been present in Linux kernels for 5+ years. The default container format is called libcontainer. Docker also supports traditional Linux containers using LXC.
It also uses Control Groups (cgroups), which have been in the Linux kernel even longer, to implement resources (such as CPU, memory, I/O) auditing and limiting, and Union file systems that support layering of the container's file system.

 

Kernel namespaces isolate containers, avoiding visibility between containers and containing faults.   Namespaces isolate:
◦     pid (processes)
◦     net (network interfaces, routing)
◦     ipc (System V interprocess communication [IPC])
◦     mnt (mount points, file systems)
◦     uts (host name)
◦     user (user IDs [UIDs])    

Containers or Virtual Machines


Containers are isolated, portable environments where you can run applications along with all the libraries and dependencies they need.
Containers aren’t virtual machines. In some ways they are similar, but there are even more ways that they are different. Like virtual machines, containers share system resources for access to compute, networking, and storage. They are different because all containers on the same host share the same OS kernel, and keep applications, runtimes, and various other services separated from each other using kernel features known as namespaces and cgroups.
Not having a separate instance of a Guest OS for each VM saves space on disk and memory at runtime, improving also the performances.
Docker added the concept of a container image, which allows containers to be used on any host with a modern Linux kernel. Soon Windows applications will enjoy the same portability among Windows hosts as well.
The container image allows for much more rapid deployment of applications than if they were packaged in a virtual machine image.



Containers networking

When Docker starts, it creates a virtual interface named docker0 on the host machine.
docker0 is a virtual Ethernet bridge that automatically forwards packets between any other network interfaces that are attached to it.
For every new container, Docker creates a pair of “peer” interfaces: one “local” eth0 interface and one unique name (e.g.: vethAQI2QT), out in the namespace of the host machine.
Traffic going outside is NATted




You can create different types of networks in Docker:

veth: a peer network device is created with one side assigned to the container and the other side is attached to a bridge specified by the lxc.network.link.   

vlan: a vlan interface is linked with the interface specified by the lxc.network.link and assigned to the container.

phys:  an already existing interface specified by the lxc.network.link is assigned to the container.

empty: will create only the loopback interface (at kernel space).

macvlan:  a  macvlan interface is linked with the interface specified by the lxc.network.link and assigned to the container.  It also specifies the mode the macvlan will use to communicate between  different macvlan on the same upper device.  The accepted modes are: private, Virtual Ethernet Port Aggregator (VEPA) and bridge

Docker Evolution - release 1.7, June 2015  

Important innovation has been introduced in the latest release of Docker, that is still experimental.

Plugins  

A big new feature is a plugin system for Engine, the first two available are for networking and volumes. This gives you the flexibility to back them with any third-party system.
For networks, this means you can seamlessly connect containers to networking systems such as Weave, Microsoft, VMware, Cisco, Nuage Networks, Midokura and Project Calico.  For volumes, this means that volumes can be stored on networked storage systems such as Flocker.

Networking  

The  release includes a huge update to how networking is done.



Libnetwork provides a native Go implementation for connecting containers.  The goal of libnetwork is to deliver a robust Container Network Model that provides a consistent programming interface and the required network abstractions for applications.
NOTE: libnetwork project is under heavy development and is not ready for general use.
There are many networking solutions available to suit a broad range of use-cases. libnetwork uses a driver / plugin model to support all of these solutions while abstracting the complexity of the driver implementations by exposing a simple and consistent Network Model to users.

Containers can now communicate across different hosts (Overlay Driver).  You can now create a network and attach containers to it.

Example:
docker network create -d overlay net1    
docker run -itd --publish-service=myapp.net1 debian:latest  

Orchestration and Clustering for containers  

Real world deployments are automated, single CLI commands are less used. Most important orchestrators are Mesos/Marathon, Google Kubernetes, Docker Swarm
Most use JSON or YAML formats to describe an application: a declarative language that says what an application looks like.
That is similar to ACI declarative language with high level abstraction to say what an application needs from the network, and have a network implement it.
This validates Cisco’s vision with ACI, very different from the NSX's of the world.

Next post explains the advantage provided by Cisco ACI (and some other projects in the open source space) when you use containers.


References

Much of the information has been taken from the following sources.
You can refer to them for a deeper investigation of the subject:

https://docs.docker.com/userguide/
https://docs.docker.com/articles/security/
https://docs.docker.com/articles/networking/   
http://www.dedoimedo.com/computers/docker-networking.html
https://mesosphere.github.io/presentations/mug-ericsson-2014/ 
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/
Exploring Opportunities: Containers and OpenStack
ACI for Simple Minds
http://www.networkworld.com/article/2981630/data-center/containers-key-as-cisco-looks-to-open-data-center-os.html
http://blogs.cisco.com/datacenter/docker-and-the-rise-of-microservices    
ACI and Containers white paper 
Cisco and Red Hat white paper    

Some content from the Docker documentation reused based on the Apache 2 License.